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Abstract

This paper describes some fundamental contributions to the theory and applicability of optimal
bounding ellipsoid (OBE) algorithms for signal processing. All reported OBE algorithms are placed
in a general framework which fruitfully demonstrates the relationship between the set-membership
principles and least square error identification. Within this framework, flexible measures for adding
explicit adaptation capability are formulated and demonstrated through simulation. Computational
complexity analysis of OBE algorithms reveals that they are of 0(m 2 ) complexity per data sample
with m the number of parameters identified, in spite of their well-known propensity toward highly-
selective updating. Two very different approaches are described for rendering a specific OBE
algorithm, the set-membership weighted recursive least squares algorithm, of 0(m) complexity.
The first approach involves an algorithmic solution in which a suboptimal test for innovation
is employed. The performance is demonstrated through simulation. The second method is an
architectural approach in which complexity is reduced through parallel computation.
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1 Introduction

Set-membership (SM) identification of parametric systems is concerned with the computational

description of feasible sets of solutions which are consistent with the measurements and the mod-

elling assumptions. SM algorithms have been the subject of intense research effort in recent years

and many approaches have been explored. The papers in [1] and [2] provide a broad and current

overview of the area. In particular, comprehensive reviews of the field with extensive reference lists

are found in papers by Walter and Piet-Lahanier [3] and by Milanese and Vicino [4]. An extensive

list of application examples with references is also given in the Milanese paper. A tutorial on the

principal algorithm of interest in this paper, the so-called set-membership weighted recursive least

squares (SM- WRLS) algorithm, is found in [5].

One class of SM methods, the optimal bounding ellipsoid (OBE) algorithms 2 , is of particular

interest to the signal community since it represents a merging of the SM approach and widely used

least square error (LSE) procedures for identifying linear models. The benefits of combining SM

considerations (when they are known) with LSE processing are twofold: First, the SM information

provides a feasible set of solutions which complements the unique LSE estimate. This feasible set

can help to compensate for the restrictive nature of the assumptions placed upon the LSE model.

Secondly, as we demonstrate in this paper, SM knowledge can greatly improve the efficiency of LSE

identification.

Two aspects of OBE processing are treated in this paper. In a general way, it is shown that

all reported OBE algorithms can be placed into a unified framework which is clearly related to

conventional LSE processing. This framework will embrace explicitly adaptive OBE algorithms

which will be demonstrated as a first major contribution of the paper. The second, and more

extensive, aspect of this paper is concerned with the computational efficiency of OBE algorithms.

OBE algorithms (both nonadaptive and adaptive) entail an interesting data selection procedure

which typically discards 70 - 95% of the incoming data. The basis for this selective updating is a

determination of whether the incoming datum is "informative" in the sense of refining the feasibility

set. The selective updating procedure, however, generally does not imply a similar reduction in

computational load, since the effort of checking for innovation in the data is approximately as

expensive as the updating itself (the one exception to this rule is the OBE algorithm of Dasgupta

and Huang [27] which is discussed below). Whether accepted or not, the processing requires 0(m 2 )

'The original algorithm in this class due to Fogel and Huang [6] was called simply "OBE". We use this term to

indicate the broader class of similar algorithms. The SM-WRLS algorithm will be seen below to be a specific type of

OBE algorithm in this broader sense.
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floating point operations 3 per incoming datum, where m represents the number of parameters to be

estimated. Because much of the OBE research has focused on control systems applications in which

m is relatively small, and where sample rates are low, this point has not been clearly brought out in

the literature. However, as these algorithms gain wider acceptance in signal processing applications,

computational efficiency will be more important. A second focus of this paper, therefore, is to

demonstrate two very different methods for making a specific OBE algorithm run in 0(m) time.

The first solution is algorithmic, while the second is architectural. The ability to execute this

interesting method in 0(m) time makes it highly competitive with conventional identification

techniques (especially recursive least squares (RLS)) which typically require 0(m 2) flops per point.

2 An Adaptive SM-WRLS Algorithm

2.1 The Model and the LSE Identification Problem

The basic identification problem is as follows: We observe a system which is generating output

sequence y(-) in response to input sequence u(.). Both input and output sequences are measurable,

and u(.) is assumed to be a realization of a stationary, ergodic random process. The system is

governed by a "true" model of form

y(n) = OrX(n) + (n)(1)

in which a(n) is some m-vector of functions of p lags of y(.) at time n, and q lags plus the present

value of u(.), and where, e.(-) is the realization of a zero-mean, white noise error sequence. The

error sequence is not measurable and the "true" parameters 0. E R' are unknown. At time n we

wish to use the observed data on t E [1, n] to deduce an estimated model which is similar in form

to (1),

Y(n) = eT(n)x(n) + e(n, 0(n)). (2)

In the following, the identified parameter vector will be unique for each n (e.g. [7]), but will change

at every step. Hence, we index the parameter estimate by n. The error sequence will depend on

the choice of parameters, and we explicitly show this dependence. Neglecting the error term, this

model exhibits only linear functional dependence upon the parameter vector and has been called

a linear in unknown coefficients (e.g. [8]) or linear-in-parameters (LP) model (e.g. [3]). Special

cases of the LP model of (2) are the autoregressive-exogenous input (A RX) and autoregressive (A R)

models (e.g. [9] - [11]). For a current overview of methods that deal with nonlinear models, the

reader is referred to [3],[4].

'One flop is taken to be a multiplication plus an addition operation.
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In particular, we desire the weighted LSE model for which O(n) minimizes (n) =- & An(t) 2 (t, 19(n)),

where An(.) is a sequence of nonnegative weights which may depend on n. O(n) can be found as

the solution of the following classical linear algebra problem (e.g. [7]): Given data (or a system of

observations) on the interval t E [1, n] (n > m), and some set of error minimization weights, say

{An(t), t = 1,2,..., n}, form the overdetermined system of equations

X(n)v = y(n) , (3)

and find the LS estimate, 0(n), for the vector v. X(n) is the m x n matrix with ith row n/ -MT(i)

and jj(n) is the n-vector with th element V/(i)y(i). We will frequently refer to (y(n), z(n)) as

the data set at time n. The expression "per n" should be interpreted to mean "per data set."

In principle, the LSE solution is the solution to the normal equations (e.g. [71), C(n)e(n) =

c(n), where C(n) is the weighted normal matrix4 [8, p. 62]

n

C(n) = X T (n)X(n) = y X A(t)Xt(t). (4)
i=1

and c(n) t x (n)y(n) = Antan(t)X Y(t).

A recursive solution can be obtained for certain classes of time varying weights. Consider first

the case in which the weights are time invariant, i.e. A),(t) does not depend on n for any t. In

this case, one can use a contemporary weighted recursive least squares (WRLS) algorithm based

on the QR decomposition (e.g. [7]) of the X(n) matrix of (3). We shall refer to this algorithm as

"QR-WRLS" to distinguish it from the more conventional WRLS algorithm based on the matrix

inversion lemma (e.g. [8],[9] - [11]) (MIL-WRLS) 5 . QR-WRLS, in principle, involves the application

of a sequence of orthogonal operators (Givens rotations) to (3) which leaves the system in the form

T(n) d,(n)
V= (5)

O(n.m)xm d2(n)

where the matrix T(n) is an m x m upper triangular Cholesky factor [7] of C(n), i.e., C(n) =

XT(n)X(n) = TT(n)T(n), and O,,j denotes the i x j zero matrix. The system

T(n)O(n) = di(n) (6)

-'In many contexts C(n) is imprecisely called a "covariance" matrix. In fact, limn-.o(l/n)C(n) is the covariance
matrix for the process if appropriate ergodicity assumptions are made.

'With the exception of the parallel processing architectures, developments throughout this paper may also be
based upon MIL-WRLS. Indeed, almost all of the existing SM algorithms of the type considered here are based on
the conventional method.
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is easily solved using back substitution [7] to obtain the LSE estimate, 0(n). This procedure can be

performed in a recursive manner using only about m 2 memory locations. When the n + 1a data set

becomes available, it is weighted by V/Xin and incorporated into the system. Details are found

in [12]-[141. We shall use the name QR-WRLS to refer to this form of the recursion. It will be

shown how this formulation makes possible the solution of the ellipsoid algorithms to be described

on contemporary parallel architectures for great speed advantages. It also avoids initialization

problems encountered in the use of MIL-WRLS [141.

The QR-WRLS algorithm can conveniently accommodate certain classes of time varying weights

of interest in this work. The first is the case in which previous weights are scaled at time n by a

time dependent scalar,
A = .(t) Vt < n - (7)
( (n- 1) -

C(.) is a scaling sequence which depends on the nature of the method. A common use for such scaling

is to effect adaptation by exponential forgetting. In this case ((n) = a-', Vn, where 0 < a < 1.

This scaling is conveniently carried out in the course of QR-WRLS by simply multiplying the matrix

and vector T(n) and d1(n) by a -1/2 prior to considering (y(n),x(n)) [13). By a straightforward

generalization of the work in [13], it can be shown that time-varying scaling may be accomplished

by a similar premultiplication by C-1/ 2(n - 1). Let us denote the scaled system of equations at

time n - 1 by T,(n - 1)0.(n) = dj,(n).

A second type of time varying weights is used to achieve adaptation by exclusion. In this case it is

desired to remove some prior data sets from the system prior to considering (y(n), x(n)). Let the set

of times corresponding to data sets to be excluded be T,,-.. Then, whereas An- 1 (t) > 0, t E Tn- 1,

it is to be true that A,(t) = 0, t E Tn- 1. This case is accomodated within QR-WRLS by simply

reentering the data set to be forgotten with its previous weight as though it represented new data,

then making some simple sign changes in the algorithm [5],[15]. Because the data sets are removed

by "reversing" the Givens rotations which originally included them, this process is often call back-

rotation. It is notable that previous data sets can likewise be partially excluded using a similar

back-rotation method [16],[17]. After all desired data sets are removed, the system of equations is

often said to be downdated at time n - 1, and we shall denote this by writing

Td(n - 1)O,(n) = dt.d(n). (8)

If it were to be solved for, Od(n) would represent an estimate at time n - 1 without knowledge of

the excluded data sets.
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2.2 The BE Constraint and the Feasibility Set

A widely-research class of SM problems is those involving bounded error (BE) constraints (e.g.

[31--[6],[151-[331). In BE identification, a pointwise bound on the true error sequence is assumed.

Ordinarily this takes the form8

E!.(n) < -t(n), (9)

where 7(.) is a known positive sequence. It follows immediately from (1) and (9) that the true

parameters must be in the set

w(2z) {0 1 (y(n) - eTX(n)) 2 < -'(n)}. (10)

When intersected over a given time range, the sets w(.) usually form convex polytopes of feasible

parameters, say f/(n) = nt=n IW(t). Methods which track these polytopes [3],[41, [18]-[21] result in

interesting but very complex algorithms which, at present, are not suitable for fast signal processing

applications. OBE algorithms are of much lower complexity and work with an outer bounding

hyperellipsoid, a superset of the polytope [6],[22]-[29. The ellipsoid is "optimized" at each step by

making some measure of its size as small as possible in light of the incoming data.

One of the drawbacks of the OBE approach from a set-theoretic point of view is that the

hyperellipsoidal bounding sets are sometimes quite "loose" supersets of the actual feasibility sets

(polytopes) (e.g. [22],[30]). This problem renders the resulting feasible superset "pessimistic" in

that it may contain many points which are infeasible, and not reflect the size of the true feasible set.

Whether certain measures can be taken, or particular OBE algorithms can be used, to minimize

this problem, is an open issue. One possible solution is the use of inner bounds, as suggested in

[30],[31). In the present work the relative size of the bounding set will turn out to be somewhat

inconsequential. It is the information afforded by the existence of the ellipsoid which is important.

2.3 Combining the BE and LSE Problems: The SM-WRLS Algorithm

OBE algorithms are fruitfully viewed as a marriage between the LSE and BE problems for LP

models. With this point of view, signal processing engineers have begun to exploit the benefits of

BE information in the context of LSE identification problems. In particular, LSE identifiers exploit

no point-by-point information which can be used to ascertain the usefulness of observations. As

a consequence, every point must be processed, and the entire parameter space is retained as a

"feasible set." BE constraints, when they are known, provide a finite feasible set and offer the

possibility of including only data points which contribute to the reduction of this set.

"This form is slightly less general than stating asymmetrical amplitude bounds, emin(n) < c.(n) < emaa(n). but
the very slight lois of generality is worth the significant analytic gain afforded by this assumption.
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As mentioned above, the polytope R(n) arising directly from BE considerations is not easy to

track and manipulate. Further, fl(n) is not clearly related to the LSE solution. However, it has

been shown in three special cases of scaling sequences, ((.) (recall definition below (7)) , that there

is an outer bounding hyperellipsoid, say 0(n), which contains fl(n) and which is closely associated

with the LSE estimate 0(n) 16),[26],[27]. A description of the hyperellipsoid is embodied in the

following:

Proposition 1 Let tI(n) g I. ' be the feasibility set arising from BE constraints as above. Let
O(n) denote the weighted LSE estimate with associated normal matrix C(n). The weights used in
the estimation are An(') with An(1) > 0. There exists a hyperellipsoidal set of parameter vectors,
11(n) C R 'n , such that 0. E fl(n) C 11(n), "'hich is given by

0(n = ( {1f 0O n ]0()[ -Oln)] I <I
where n(n) is the scalar quantity, K(n) df OT(n)C(n)O(n) + F Y(n)A (t) [1 -- Y-1(t)y2(t)]

and 0(n) = C(n)/K(n).

Note that the ellipsoid is centered on the LSE estimate, O(n), and its defining matrix is a scaled

version of the normal matrix, C(n).

The proof of Proposition 1 is a generalization of the proofs of similar results for special cases

(discussed below) found in [6] and [26]. Another related result for complex-valued, multiple input

multiple output systems is proved in [16],[34].

Clearly, the weights A,(.) parameterize 0(n) and determine its size and orientation in the

parameter space. Because we want to work with recursive LSE estimation, in particular QR-

WRLS, let us henceforth restrict our attention to weight seque.ices which conform to the simple

forms of time variation described in Section 2.1 - scaling and exclusion. This effectively restricts to

one the number of free parameters available to control the bounding ellipsoid. The centrai objective

of an optimal bounding ellipsoid (OBE) algorithm is to employ these free weights in the context

of LSE estimation to sequentially minimize the ellipsoid size in some sense. A significant benefit

is that often no weight exists which minimizes the ellipsoid size in some sense, indicating that the

incoming data set is uninformative in the SM sense.

In a general sense, reported (nonadaptive) OBE algorithms differ in the scaling sequences, ((.,

used in creating time varying weights. Fogel and Huang's original OBE algorithm (henceforth called

Fogel-Huang OBE) [61, and the more recent method by Dasgupta and Huang (henceforth called

Dasgupta-Huang OBE) [27], are not presented from this explicit LSE point of view, and this unified

approach has not been widely discussed. Some general ideas along these lines may be inferred from

[33] and a unified treatment will be found in [34]. The set membership weighted recursive Icast
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squares (SM-WRLS) algorithm is the simplest in this sense, employing unity scaling, ((n) = 1 Vn.

We henceforth focus on SM-WRLS because this absence of scaling is essential to achieve the desired

low complexity algorithm. Details of the other reported algorithms are left to the original papers

and enhancements by Belforte et al. [221, and Rao et al. [23],[24].

Nonadaptive SM-WRLS (when based upon QR-WRLS) is comprised of the following steps: At

time n,

1. In conjunction with the incoming data set (y(n), x(n)), find the optimal weight, say Ao(n),

which will (prospectively) minimize the size (according to some set measure) of 0(n), say

p{1(n)}. (This will generally require knowledge of C(n - 1) or T(n - 1), and lc(n - 1).)

2. Discard the data set if (n) < 0.

3. Update O(n) using QR-WRLS (see Section 2.1).

4. Update K(n) of Proposition 1 according to

n(n) I dl(n) II +R(n) (12)

with

k(n) = i,(n - 1) + \,(n)y(n) (1 - -- '(n)y2(n)) (13)

where R(O) del 0.

Expressions (12) and (13) are derived in [5],[15]. A detailed version of SM-WRLS is described in

[5].

2.4 Adaptation by Back-Rotation

OBE algorithms in general, and the SM-WRLS algorithm in particular, have been shown in many

simulations to have superior tracking capability for time varying systems when compared with

conventional RLS and other "nonadaptive" identifiers. In some sense, this improved tracking is a

result of inherent and fortuitous adaptive properties arising from the the optimal weighting strate-

gies which induce "forgetting" by virtue of increasing weights, or through the scaling factors (.).

This "adaptation" pertains to the central estimate 0(.) only, and there is no provision for adapting

the feasibility set 0(.) to time varying dynamics. Consequently, the tracking behavior of "conven-

tional" OBE algorithms is not predictable nor controllable. However, measures have been suggested

by Deller and Odeh [5],[151-[171, and Norton and Mo [331 to render explicit and controllable adap-

tation. All adaptive strategies for ellipsoid algorithms work on the general principle of inflating

the "current" ellipsoid in some sense before considering an incoming data set. The basis for this

7



inflation is to contain the shifting true parameters while at the same time increasing some measure

of "size" of the ellipsoid (see (16) and (17) below), making it more likely that the incoming data,

with potentially novel information, will be selected.

For SM-WRLS, simple forms of adaptation have been based upon exponential forgetting and

by exclusion or back-rotation [51,[151-[171. Norton and Mo have also worked with exponential

forgetting and other forms of adaptation in a broader context [33]. While exponential forgetting

is conveniently integrated into OBE algorithms, in the following we shall focus exclusively upon

adaptation methods which are based on back-rotation, for two reasons: First, exponential forgetting

precludes the achievement of the low complexity algorithm ultimately sought in this work. Secondly,

due to the fact that heavily weighted points remain influential in the estimate for very long periods

of time, exponential forgetting has not been found to be as effective in tracking fast time variations

in system dynamics [161,4341. In the case of adaptation by back-rotation, the system of equations (6)

is downdated prior to considering the data set at time n. The result is (8). The altered ellipsoid is

centered on Od(n- 1) and has associated matrix Cd(n- 1)/ld(n- 1) = TT(n - 1)Td(n- 1)/Kd(n- 1).

Proper downdating of the scalar K(n - 1) is easy. Upon rewriting the definition of K(.) from

Proposition 1 at time n - 1,

n-Kn-1) = 0T(n _-)~ - 1)0(n - 1) + \-I(-~)[_-(~2tj(4

it becomes immediately clear that if data sets at times t E T_ 1 are eliminated from the system,

then the normal matrix is simply replaced by its downdated version and all deleted terms should

be removed from the sum on the right. Correspondingly, the downdated version of (12) written for

time n - 1 becomes

Kd(n - 1) =11 did(n - 1)112 + [R(n - 1)- E A. - (t) 7 (t) (1 - .- - (t)y2(t))] (15)

and the term R(n - 1) in (13) should be replaced by Rd(n - 1) which is defined to be the term in

square brackets.

A wide range of adaptation strategies is inherent in the general formulation described above,

many of them computationally inexpensive. We have found two forms of adaptation by back-

rotation to be particularly effective. These are:

1. Windowing. Let I be a fixed "window length." For each n > 1, let T._ 1 = {n - l}.

2. Selective Forgetting. At time n check some predetermined criterion indicating whether adap-

tation is necessary. If so, select the set to be forgotten according to some other criterion.

8



The first case above corresponds to the use of a sliding rectangular window of length 1, outside of

which all previous data sets are completely removed. The estimate at time n covers the range [n -

I + 1, n]. The windowing technique is made possible by the ability to completely and systematically

remove data sets at the trailing edge of the window. Only one back-rotation is required prior to

optimizing at time n, and this is only necessary if A)tt(n - 1) # 0.

At significaytly higher computational expense, smoother windows can be implemented by back-

rotation. This is accomplished by partial rotation of an included data set according to a schedule

which gradually eliminates the data set [161,[171. Since each included data set is back-rotated many

times, the computation required to effect such a window is frequently not warranted by the benefits

of slightly improved frequency resolution. For details, see [16].

Selective forgetting represents a very general class of techniques in which the data sets to be

removed from the system are selected according to certain user defined criteria. The selection

process can be, for example, to remove (or downweight) only the previously heavily weighted data

sets, to remove the data sets that were accepted in regions of abrupt change in the signal dynamics,

or to remove the data sets starting from the first data set and proceeding sequentially. Whatever

the criterion, a fundamental issue is to detect when adaptation is needed to improve the parameter

estimates. An example is explored in the simulation studies below.

2.5 Optimization

In the nonadaptive case. Fogel and Iluang [61 suggest two set inisures on Q(n) for optimization.

These measures may also be applied to the downdated systeni extant at time n - I if adaptation

is employed. For generality, we assume downdating in the following. If adaptation is not used, it

is only necessary to drop subscripts "d" where they occur. The first Fogel and Huang set measure

is the determinant of the matrix - (n),

t,{f0(n)} (let {-I(n)} (16)

and the second is the trace.
1 1 t --n . t ( 1 7 )

P,,{Q( n)} is proportional to the square of the volume of 0(n) while pit{Q( n)} is proportional to the

slim of the squares of its semi-axes. '[he following is a slightly generalized version (to accommodate

adaptation by downdating) of results found in [6].[26]. Further generalizations are found in [34].



Proposition 2 Let T7._1 be the set of times corresponding to data sets to be excluded by back-
rotation prior to time n. Then let An(t), t E [ 1, n] indicate the weights to be used to optimize (16)
or (17) at time n. Under the adaptation by exclusion policy, for t E [1, n - 11 and t . T, l,
An(t) = An(t). Fort E [1, n - 1] and t E T._, An(t) = 0. Then,

1. if it exists, An(n) which minimizes the volume measure (16) is the unique positive root of the
quadratic equation

F(,\) = a2 \
2 + alA + ao = 0 (18)

where, a2 = {(m- 1)-(n)G2(n)},

a, = {(2m - 1) + -1(n) 2 (n, Od(n - 1)) - Kd(n - 1)7-1 (n)Gd(n)) y/(n)Gd(n),

and ao - m [(n) - 62 (n, Od(n - 1))] - Kd(n - 1)Gd(n),

in which all quantities are defined above except Gd(n) ____ xT(n)Cdl(n)x(n).

2. if it exists, the weight An(n) which minimizes the trace measure (17), is the unique positive
root of the cubic equation

Ft(A) = b3A3 + b2A2 + b oA + b0 (19)

with b3 = 7(n)G2(Gd(n) - Id(n - 1)Hdl(n))

b2= 3-y(n)Gd(n)[Gd(n) - Id(n - 1)Hd(n),

b I d(n)Gd(n)Id(n - 1)Kd(n - 1)

-2Hd(n)Id(n - 1)[y(n) - E2(n, Od(n - 1))]

-Gd(n) 2 (n, Od(n - 1)) + 37(n)Gd(n),

and bo= -(n) - 62(n, Od(n - 1)) - Ild(n)Id(n - 1)nd(n - 1),

where Hd(n) 4'f XT(n)Cd 2(n)x(n) and Id(n) L' tr Cd(n).

For later computational considerations we note the following. In the context of QR-WRLS, the

inverse normal matrix, Cdl(n - 1), never appears, yet it is needed to compute Gd(n) and Hd(n).

The following circumvents this problem:

Lemma 1 In the context of QR- IVRLS the scalars Gd(n) and Had(n) can be computed using
O(m2/2) flops.

Proof. Write

Gd(n) = xT(n)Td(n - 1)T-T(n - 1)x(n) L'f gT(n)g(n) = II g(n) 112 (20)

in which II II denotes the 12 norm. Now x(n) = TT(n - l)g(n), and TT(n - 1) is lower triangular,

so g(n) is found by back-substitution using (m2 + m)/2 flops. Now note that

Hd(n) = xT(n)TdI(n - I)T-T(n - - 1)T (n - 1) (n) (21)
= gT(n)T* 1(n - 1)T-T(n - 1)g(n) 4- hT(n)h(n) = II h(n) 112

and back-substitution can once again be employed. 0
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3 Implementing SM-WRLS in 0(m) Time

3.1 Complexity Considerations

A precise comparis6n of the computational loads of various OBE algorithms is given in (34]. The

number of flops (see footnote 3) required for the (generally adaptive) SM-WRLS algorithm tinder

consideration here may be approximated by

l ~Pt o(cIm 2) + bO(c 2m2) + pO(c3m2) (22)

where, p is the average number of data sets accepted per n; b is the average number of back-rotations

per n; and cl, c2 and c3 are small numbers (all in the range 0.5 - 2.5) which depend upon whether

QR-WRLS or MIL-WRLS is used. For QR-WRLS upon which we have principally focussed in this

paper, cl = 0.5, c2 = 2, and c3 = 2.5. The first term is due to the procedure which checks for

information in the incoming data. The others are attributable to adaptation, and solution update,

respectively. If either an exponential forgetting factor or a non-unity scaling sequence (other OBE

algorithms), is used, an additional term of O(m 2/2) must be added. Apparently, the SM-WRLS

algorithm, as presently formulated, is an "O(m 2 )" process. The objective of the section below is to

demonstrate two distinct methods for reducing the effective complexity to 0(m), thereby making a

SM-WRLS algorithm a desirable alternative to standard RLS-based methods from a computational

point of view.

Two approaches are taken. The first is an algorithmic solution which will reduce the true

complexity to 0(m) for processing on a sequential machine. The second is a hardware solution

which reduces the basic algorithm to 0(m) parallel complexity, with even further reduction possible

if the algorithmic measures are combined.

3.2 ((m) Processing on a Sequential Machine

From a signal processing point of view, one of the most interesting aspects of an OBE algorithm

is its inherent ability to select only data points which are informative in the sense of refining

the feasible set. The fact that typically 70 - 95% of the data are rejected by this criterion (e.g.

[6],[17],[23]-[29]) would seem to imply a remarkable savings in computation. However, this is only

true to the extent that the checking for usefulness of the incoming data set is negligibly expensive

compared with the inclusion of it in the estimate. We have seen above, however, that the checking

procedure is not inexpensive (see lead term of (22)) - a point which has not been made clear in

reported research. The approach taken here is to render the checking procedure an 0(m) process

in a manner which does not (empirically) degrade performance of the algorithm.
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Before detailing the methods, some points about the use of the approximation "O(m)" are

necessary. The first concerns a practical matter. The objective in the following is to reduce

the computational complexity of the algorithms to an average of 0(m) flops per n. It will be

appreciated that, without data buffering, the data flow is still limited by the worst case 0(m 2)

computation. However, if a buffer is included, the algorithm easily be structured to operate in

0(m) average time per n. Further, by using interrupt driven processing of the checking procedure,

it may be possible to reduce the average time even further. Other points concern algorithmic

details. We reiterate that the use of a unity scaling sequence (SM-WRLS algorithm) is required in

order to avoid an invariant 0(m 2/2) flops per n. We specifically assume the use of this algorithm

below, although the 0(m) checking procedure to be developed does not depend on this choice.

Secondly, (22) indicates that an adaptive strategy must involve a sufficiently small average number

of back-rotations per n so that the 0(m 2 ) adaptation term in (22) does not overwhelm gains made

by reducing the checking cost. In the windowing case above, for example, we would expect that

b - p and the adaptation is not unduly expensive. A selective forgetting strategy which meets this

condition will also be illustrated in the simulations below. Finally, we note that even if the checking

procedure can be made 0(m), terms bO(m 2) and po(m2 ) (typically b ; p) persist in (22). This

means that to truly achieve 0(m) complexity, 6 and p must be 0(1/m). For large m, this will

not be always be the case. In fact, some experimental evidence suggests, not unexpectedly, that p

increases, rather than decreases, with increasing m. For "large" m (conservatively, say, m > 10),

therefore, it is the case that the complexity is reduced to 0(pm2) by 0(m) checking. It should be

clear however, that neither 0(m) nor 0(pm2 ) complexity can be achieved if the checking procedure

remains 0(m 2 ) . We therefore pursue an 0(m) test for information in an incoming data set.

In principle, the information checking procedure for the volume or trace algorithms consists of

forming either F(A) or Ft(A) of (18) and (19), then solving for the positive root. However, since

a2 > 0, and bi > 0, i = 1,2,3, there is at most one such root in either case, and the test reduces to

one of checking the zero order coefficient for negativity [35]. When the test is successful, then the

root solving and updating proceeds, requiring the standard MIL- or QR-WRLS load, plus a few

operations for finding the optimal weight. In spite of Lemma 1, the most expensive aspect of this

information test is the computation of the quantity Gd(n) or Hd(n), each requiring 0(m 2/2) flops.

The trick to making the SM-WRLS algorithm an 0(m) procedure is to find a way to avoid the

computation of Gd(n) or Hd(n) at each n. We first develop a method which accomplishes this for

the "volume" algorithm, then argue that it pertains to the "trace" optimization criterion as w~Al.

Let us denote the estimation error vector at time n by

b(n) L4'O. - 0(n). (23)

12



It follows immediately from (11) that T (n)C(n)O(n) < n(n) . While it is tempting to view K(n)

as a bound on 0(n) (see discussion of the Dasgupta-Huang algorithm below), it is important to

note that each side of this inequality is dependent upon An(n). In fact, let us temporarily write

the two key quantities as functions of An(n) : C(n, A,(n)) and K(n, An(n)) and consider the usual

volume quantity to be minimized at time n,

,,{0(n)} = det [n(n,An())C-1(n. A(n))]. (24)

It is assumed that enough data sets have been included in the normal matrix at time n - 1 so

that its elements are large with respect to the data in the incoming data set. For the c hoice of

weighting strategy employed here, the quantity det C(n, An(n)) is readily shown to be monotonically

increasing with respect to An(n) on the domain (0, oo) [16], with C(n, 0) " C(n - 1, A*,(n - 1)).

Under the assumption above, det C(n, An(n)) will not increase significantly over reasonably small

values of An(n). The attempt to maximize det O(n, An(n)) in (24) causes a tendency to increase

An(n) in the usual optimization process. However, the attempt to minimize n(n, An(n)) generally

causes a tendency toward small values of An(n), unless a minimum of K(n, An(n)) occurs at a "large"

value of An(n). To pursue this idea and further points of the argument, we use two key facts about

Proposition 3 K(n, An(n)) has the following properties: 1. On the interval An(n) E (0, oo),
K(n, An(n)) is either monotonically increasing or it has a single minimum. 2. K(n, A,(n)) has
a minimum on An(n) E (0, 00) iff

E2 (n, Od(n - 1)) > -(n). (25)

To verify this result we need the following which is proven in [34]:

Lemma 2 For n > 1, the sequence r(.) can be computed recursively as

K(n) = Kd(n - 1) + A,(n)y(n) - A n+ (n, ((n - . (26)

Proof of Proposition 3: For simplicity, we write Aj(n) as A. Using (26) from Lemma 2, we can

write
Q(A) dO, aK(n, A) G2(n)y(n)A2 + 2Gd(n)y(n)A + [3y(n) - E2(n, Od(n - 1))] (27)= A Gd(n)2 A2 + 2Gd(n)A + 1

and
2_(n, A)= 2[G'(n) + -(n)Gd(n)]s 2(n, O(n- 1)
a,\2 ) - (G2(n)A2 + 2Gd(n)A + 1)2 (28)
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The denominator of Q(A) is positive on A E (0, oo) and therefore has a root on A E (0, c0) iff its

numerator does. The the numerator is a convex parabola with its minumum at A = -1/Gd(n) < 0,

and it therefore has a unique positive root on the interval (0,oo) iff -f(n) - 62 (n, Od(n - 1)) < 0.

Further 0(A) > 0 for all A > 0, so the root, if it exists, will correspond to a minimum of K(n, A).O

Accordingly, it can be argued that: If det C(n, An(n)) is increasing, but not changing signifi-

cantly over reasonably small values of An(n), then it is sufficient to seek A,(n) which minimizes

ic(n, A,,(n)). If x(n, An(n)) is monotonically increasing on An(n) _ 0, this value is An(n) = 0 which

corresponds to rejection of the data set at time n. It suffices, therefore to have a test for a minimum

of Pc(n, An(n)) on positive An(n). A simple test is embodied in condition (25) which determines

whether the square of the current residual exceeds the upcoming error bound. If this test is met,

it is then cost effective to proceed with the standard optimization centered on (18). Otherwise, the

explicit construction and solution of a0 of (18) can be avoided.

In fact, this suboptimal test for innovation is similar to that used in the Dasgupta-Huang OBE

algorithm reported in [27]. The suboptimal test of Dasgupta and Huang is to accept the incoming

data set only if' 6 2 (n,O(n - 1)) < y(n) - (n - 1). This inequality likewise tests for a minimum

of . with respect to A(n), and differs in form from (25) because of the scaling factors (see (7)

and surrounding discussion) which depend on the optimal weights, ((n - 1) = (1 - A\(n)) - 1 in the

Dasgupta-Huang case. While this dependence precludes the construction of a reasonable expression

in A(n) with which to minimize the set measure /sf{ (n)}, the Dasgupta-Huang hyperellipsoid

nevertheless does have a volume at each n, and it is therefore possible to attempt to apply the

above arguments. A problem arises in the Dasgupta-Huang case, however, because the relative

independence of C(n) and An(n) is not tennably argued. Therefore, the simplified test in this case

is not subject to the "same" justification as (25). Interestingly, however, if An(n), which is already

constrained to [0, 1) in the Dasgupta-Huang algorithm, happens to be very small at a particular

n, then the algorithm approaches the case of unity scale factors (((n) 1) as in SM-WRLS, and

it can be argued that the normal matrix changes only slightly. In this case, but only in this case,

the arguments above are applicable. Of course, artificially constraining the weights to be small

for all n destroys the optimization process in the Dasgupta-Huang method, so that this analysis

provides support for the suboptimal test only for isolated and infrequent times. Dasgupta and

Huang argue simply that (n) is "a bound on the estimation error," and should be minimized.

This claim has been disputed by Norton and Mo [331 and is not clearly supported here. Generally,

the arguments in support of (25) are valid only for certain types of scaling sequen'es which do

not cause the estimation process to "forget" too quickly. This is not generally the case with the

7Subscripts "d" are omitted here since their algorithm does not involve this form of adaptation.
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Dasgupta-Huang strategy.

Before proceeding, another comparison to the Dasgupta-Huang OBE algorithm should be made.

One of the principal advantages of their method is the ability to conveniently prove convergence

of the ellipsoid to a point (0.). The original Fogel and Huang paper [6] is sometimes cited as

proving that the bounding ellipsoid in the Fogel-Huang OBE algorithm converges to a point under

ordinary conditions on c.(.). In fact, the paper only proves this convergence for the case of unity

weights so that the fundamental optimization process is not taken into account. No known proof

of this desirable result for the Fogel-Huang OBE algorithm, or for any version of SM-WRLS

exists, whether optimal or suboptimal checking is used. While the estimate itself is guaranteed to

converge asymptotically under proper conditions on (.) (e.g. [10]), the ellipsoid is not guaranteed

to diminish asymptotically. However, we have found empirically that the optimal and suboptimal

tests tend to produce an ellipsoid with a similar "size" at a given point in the signal, and to

produce similar estimates, in spite of the fact that the suboptimal test tends to use fewer data (see

simulations below).

A further interpretation of (25) is possible which also allows the extension of the test to include

"trace" minimization as well. A simple rationale for the suboptimal test is as follows:

Proposition 4 If the test of (25) is met, then a positive optimal weight exists for either the volume
or trace criterion.

Proof.- We show that the zero order cofficients ao and b0 , of (18) and (19), respectively, will never

be positive if the test is met. Consider ao = m [7(n) - 0(n, Od(n - 1))] - Kd(n - 1)Gd(n). Write

(11) for the downdated case at time n - 1, then multiply through by Kd(n - 1). The result is

[0 -ed(n -- 1)IT Cd(n- 1)[0 - Od(n - 1)] < d(n - 1). If Cd( n-1) is positive definite, this implies

that Kd(n - 1) > 0. Further Gd(n) = xT(n)Cd(n - 1)x(n) > 0, so a0 < 0 if the test (25) is met.

Now, consider b0 = y(n) - 0(n, Od(n - 1)) - Hd(n)II(n - 1)Kd(n - 1). By similarly showing that

Hd(n) > 0 and Id(n - 1) > 0, the desired result for the trace criterion is obtained. 0

In the volume case, for example, the suboptimal check tests whether a0 is negative if the term

-Kd(n-1)Gd(n) is neglected. This ignored term is always negative and becomes small as n increases.

For a given set of preceding optimal weights, A*(1),..., A*(n - 1), the optimal test will always accept

a data set which is accepted by the suboptimal test. While the converse is not true, the tests become

similar for large n, and empirical evidence (see below) suggests that those data "missed" by the

suboptimal test are not essential to good performance. A similar analysis applies to the coefficient

b0 of the trace algorithm.

With the inexpensive test afforded by (25), the checking procedure becomes an 0(m) procedure.
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Consequently, for sufficiently small p, the SM-WRLS algorithm can be run in 0(m) time per n.

3.3 Simulation Studies and Further Discussion

OBE algorithms which do not include explicit adaptation measures have been demonstrated in

numerous papers cited above. Our principal objective here is to briefly illustrate the use of the

adaptive and, particularly, the 0(m) suboptimal checking procedures.

We consider the identification of a time varying A R(14) model of the form

14

y(n) = ai.(n)y(n - i) + e.(n). (29)
i=1

A set of "true" AR parameters were derived using linear prediction analysis (e.g. [361) of order 14

on an utterance of the word "seven" by an adult male speaker. The original speech waveform is

shown in Fig. 1 to illustrate the time varying nature of the signal. A 7000 point sequence, y(n),

was generated by driving the derived set of parameters with an uncorrelated sequence, .(n), which

was uniformly distributed on [-1, 1].

The speech signal was not used directly in this study for a simple reason. The problem of

determining proper bounds for the model error is a nontrivial one for real speech, and a proper

description of this point would seriously sidetrack the present discussion. Similarly, space would not

permit a careful discussion of the performance of the algorithm in cases in which noise bounds are

uncertain or violated. The predecessor (optimal, nonadaptive case) methods to those illustrated

here have been successfully applied to real speech and these results are reported in [261 where

some of these more difficult issues are also addressed. In the same vein, the artificial noise permits

carefully controlled statistical properties. The model noise used here is uncorrelated, and this

algorithm in its present form will converge to a bias if this is not the case. A discussion of colored

noise, while interesting and useful, is beyond the scope of this paper. The interested reader is

referred to [24],[28],[34]. While the uniform distribution chosen here has become conventional in

testing OBE algorithms, it is worth noting that the performance of the methods is bound to be

affected to some extent by the choice of this distribution. This becomes clear upon recognizing

that the algorithm tends to favor the acceptance of data at time n when the residual is large. In

some preliminary runs with bounded but nonuniform distributions, we do not find these effects to

be very significant.

In the simulations below, we apply the conventional and adaptive SM-WRLS algorithms with

"volume" optimization to the identification of the ai. parameters. We discuss several simulation

results. Only the result for a4, is shown in each case to conserve space. Of the 14 parameters,

a4.emerged as the most difficult to track and gave the worst performance. Each figure shows two
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curves, one for the true parameter, the other for the estimate obtained by the algorithm under

study.

We have noted above that that OBE algorithms often exhibit good tracking capabilities by

virtue of their optimal data weighting strategies, even when not explicitly designed to be adap-

tive (e.g. [24]-[29]). However, the tracking ability of "nonadaptive" OBE algorithms is somewhat

unpredictable and fortuitous, especially for fast time variations. Further they are subject to di-

vecgence if the true parameters move outside the feasible set. Nevertheless, SM-WRLS and other

OBE algorithms often demonstrate this inherent ability. The present example is contrary. Figure

2 illustrates the result of applying SM-WRLS to the time varying waveform. The estimate clearly

fails to appropriately track the true parameter in this case.

Before proceeding, let us use the present result to emphasize a principal point made in the paper.

The result of Fig. 2 is achieved using only the fraction p = 0.079 of the data. Other examples

are found in the literature where good tracking is achieved with similar, or even smaller, fractions

of the data use4. It is important to keep in mind, however, that the computational complexity

of the SM-WRLS algorithm is only a factor of about five better than conventional RLS, and the
"p = 0.079" figure must not be interpreted to the contrary. Herein lies the motivation for the

suboptimal checking procedure.

Next, we show the simulation results of the variations on the adaptive SM-WRLS algorithm.

Figure 3 shows the results of the windowed SM-WRLS algorithm using windows of lengths 500, 1000,

and 1500. This strategy uses the fractions p = 0.221, 0.174, and 0.143 of the data, respectively, but

remains an 0(m 2) process because optimal checking is used. Additionally, each time an accepted

poiPt occurs at the trailing edge of the window, a back-rotation is needed to effect adaptation. This

implies an average number of back-rotations b 2 p per n (see Section 3.1). More data and more

rotations than with the unmodified SM-WRLS algorithm are used, but more accurate estimates

result and the time varying parameters are tracked more quickly and accurately. As expected,

adapting over smaller windows tended to improve time resolution, but increased the variation of

the estimate and increased the number of points accepted. Conversely, the longer windows yielded

smoother estimates using fewer data, but at the expense of slower tracking. While no window length

in this range yielded grossly unacceptable estimates, the 1000 point window illustrated represents

a good tradeoff between the demands of time and frequency resolution.

Figure 4 illustrates the use of suboptimal checking in conjunction with windowed SM-WRLS

with a window of length 1000. Interestingly, the fraction of the data used is p' = 0.087 which is

about half that required in the sawe experiment with optimal data checking (Fig. 3(b)). This

means that the suboptimal checking not only reduced the computational effort of checking, but
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also decreased by a factor of two the number of m 2 complexity rotations required. Nevertheless,

the estimate trace is quite similar to the optimal case, the only difference being a slight increase

in the variance near the end of the trace. Similar results were obtained for windows of length 500

and 1500.

The selective forgetting strategy chooses data sets to be removed from the system based on user

defined criteria. Here the set of times to be back-rotated is as follows. Let t' < n correspond to

the "oldest" data set remaining in the estimate. Then T - -" {t',. - ., t"}, where the elements in

the set are ordered, t' < ... < t", and t" < n is the smallest time for which some other criterion

is met. The determination of when to apply the forgetting procedure and when to stop removing

data sets at a given time is discussed in the following.

The parameter a4, to be tracked in this study is characterized by relatively fast time variations

in the time region 2000 - 6000. The fact that the parameters change relatively slowly in the

first 2000 points induces the algorithm to accept some points which, in turn, causes the ellipsoid

volume to decrease. An increase in the "confidence" of the estimate results. Near time 2000, the

ellipsoid volume becomes very small. When the parameters move rapidly away from their current

location, they eventually move outside the ellipsoid which is therefore no longer a valid bounding

ellipsoid. When this condition happens, it eventually leads to a negative value of K(n). For a

stationary system, K(n) is always positive, so that this condition indicates that a violation of the

theory (in particular, the violation of the assumption of stationary dynamics) has taken places . A

similar condition was also reported by Dasgupta and Huang (271 while applying their algorithm

to nonstationary systems. In our simulation studies, we find that a negative K(n) is often an

effective indicator of need for adaptation, and we use this criterion as the prompt to begin selective

forgetting. Whenever accepting a data set causes K(n) to become negative, the algorithm starts

rotating out the selected data sets until K(n) becomes positive again.

Figure 5 shows the simulation results of the selective forgetting strategy described here. The

fraction p = 0.129 of the data is accepted by the estimation procedure and about 73% of these are

back-rotated for adaptation. This implies a small "b" factor of about 0.094 per n so that adaptation

is not expensive in this case. The checking process is still 0(m 2), however, so the overall process

remains of 0(m 2) complexity. Suboptimal checking for the same experiment is illustrated in Fig.

6. In this case p' = 0.088 of the data is used with similar results. About 63% of these data are

back-rotated, so that b = 0.055. Once again, the suboptimal test has preserved the quality of the

estimate and lowered not only the checking complexity, but also the number of actual rotations

that need be implemented.

"Mathematically, x(n) < 0 indicates an ellipsoid of negative dimensions.
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Compared to the windowed adaptive strategies, for this example the selective forgetting strategy

yields smoother estimates using even fewer computations, but with poorer time resolution. (Recall

that a4. was found to be the most difficult to track in this simulation, so that this result is the

worst case.) In general, we have found that selective forgetting (as employed here) generally uses

fewer data and produces smoother estimates, but the tracking ability is not as reliable (though

sometimes superior) to the windowed method [161,(341. In fact, the selective forgetting strategy (as

used here) tends to outperform windowing in cases of very fast time variations in the dynamics.

The conservative schedule of back-rotations employed in the present technique accounts for this

observation. i(n) > 0 is only a necessary condition for the true parameters to be inside the current

ellipsoid. The fact that K(.) goes negative at a particular time does not precisely determine the point

at which system dynamics began to change. If the variations are slow, this may occur (if at all) long

after the dynamics begin to change. In fact, n(n) < 0 often indicates a rather severe breakdown of

the process indicating that the "true" parameters have moved well outside the current ellipsoid at

time n. In cases of fast changing dynamics this "breakdown" occurs rapidly enough to render the

condition "K(n) < 0" a good locator of changing dynamics which require "immediate" adaptation

to preserve the integrity of the process. The present example represents a very challenging case in

the sense that variations apparently occur too rapidly to be tracked by standard SM-WRLS (see

Fig. 2), yet not quickly enough to allow very high time resolution by the chosen selective forgetting

method. Other methods for selection leading to a more aggressive elimination of past data may

assist in the tracking at the expense of higher fractions of data used.

4 Architectural Solutions to Achieving 0(in) Time

4.1 Systolic Architecture

In this section we develop parallel architectures on which both suboptimal and optimal checking

versions of SM-WRLS will run in 0(m) time. Here the efficiency is achieved by parallelism so that

the number of operations is effectively reduced by simultaneous execution of many computations.

In the following we will assume the use of SM-WRLS (no scaling) for simplicity. Unlike the

sequential case, however, scaling can be done in parallel here and does not add a significant com-

putational burden. The modification of the following to include scaling is straightforward. We also

use ellipsoid volume minimization for optimization, but a similar machine may be developed to

implement trace optimization.

We first discuss the "nonadaptive" case. The fundamental parallel solution is made possible by

the QR-WRLS version of SM-WRLS. The main computational requirements are a GR processor
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(to effectively execute the QR decomposition) to update the matrix [T(n) I di(n)] at each step,

and a back substitution (BS) processor to solve for the scalar G(n) and also for the estimate 0(n)

at each n. Systolic processors for these operations, based on the original work of Gentleman and

Kung [37] and Kung and Leiserson [38], are well known. It is the purpose of this section to manifest

this algorithm as a parallel architecture based on these processors.

The need for implementing the algorithm on a parallel architecture arises from the fact that

portions of the algorithm are compute-bound, specifically, updating the matrix (T(n) I di(n)]

and computing the value G(n) and the parameter vector 0(n). The architecture that speeds up

the computation of these quantities and satisfies the desirable characteristics of systolic arrays

(SA's) is shown in Fig. 7. This architecture provides an improvement over that described in [39] by

replacing the global buses with local buses for communication between adjacent cells. For simplicity

of notation, the figure shows a purely autorcyressive case of order three, A R(3). Once the processor

is understood, it should be clear that the architectunre is perfectly capable of handling the general LP

model case discussed above. In the discussion below, the vector notations x(n) and 0(n) are used,

however, the architecture of Fig. 7 uses the vectors y(n) and a(n) instead to denote the special

case AR(3), where y(n) = [y(n - 1) y(n -2) y(n - 3 )]T.

The architecture is composed of two SA's. several memory management units (i.e., First-in

First-out (FIFO) and Last-in First-out (LIFO) stacks'), multiply-,tdd units (MAU's), multiplexers

(MPX's), and demultiplexers (DMX's). The first SA is a triangular array that performs QR

decomposition using GR's [37, 40] which are particularly suitable for solving recursive linear LSE

problems. The diagonal (circular) cells perform the "Givens generation" (GG) operations and all

other (square) cells in the triangular array perform the GR operations. There is a delay element

at the lower right-hand corner of the triangular array that is used to synchronize the flow of the

generated entries into the FIFO stacks and to simplify the control of these stacks once they are

filled and ready to output their contents to the BS array. The operations performed by this array

are shown in Fig. 8 [37, 40]. Therefore, the triangular array rotates the new data set into the upper

triangular matrix [T(n) I di(n)], where the tij cells update the matrix T(n) and the right-hand

column (d1j) cells update the vector d 1(n). The element tj denotes the i,jth element of the matrix

T(n) and the element d1j denotes the jt" element of the vector dl(n).

The second array is a linear array that performs the BS operations shown in Fig. 9 [38]. Note

that the same BS array is used to solve for the vectors g(n + 1) and 0(n) with the data provided to

'The architecture shown in Fig. 7 d,- not include any of the LIFO stacks that were used to hold the matrix
T(n) in the architecture reported in [391. This is achieved by slightly increasing the complexity of the cells u.ed
in the triangular array so that they can be used as storage elements as well. This is facilitated by the diagonal
interconnections between adjacent cells which now constitute the LIFO stacks.
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the appropriate cells in the required order by the FIFO and LIFO stacks. The FIFO stacks feed the

lower triangular matrix TT(n) to solve for the vector g(n + 1), and hence, the value G(n + 1). The

LIFO stacks feed the upper triangular matrix T(n) to solve for the parameter vector 0(n). The

values G(n+ 1) = 11 g(n+ +) 112 and 1i di(n) 112 are generated by the MAU's shown in Fig. 10. The

number of segments in each stack is equal to the number of elements the stack holds. Therefore,

the leftmost stack consists of m segments, whereas the rightmost stack has only one segment.

The system shown in Fig. 7 works as follows. The first m+1 data sets (with appropriate

weights) enter the triangular array (from the top) in a skewed order, and the matrix [T(n) I di(n)]

is generated and stored inside the cells. A shift register with appropriate feedback connection and

data sequencing can be used to hold and feed the data set to the array. The initial upper triangular

matrix residing in the array. and corresponding to the first m + I data sets, is ready after 3m + I

GG time cycles. The GG time cycle is that of the triangular array performing the GG operations

without square roots, which is the time required to perform five flops [40],[41]. In order to prevent

data collision, the flow of data in the triangular array moves along a corresponding wavefront and is

controlled by the slowest cells in the array, viz., GG cells. The data are fed to the array one (skewed)

data set at a time, therefore, the contents of each cell remains constant after the completion of

the current recursion. After the new data set is rotated into the matrix (T(n) I di(n)], the vectors

g(n + 1) and 0(n) are computed. All the tj cells in the triangular array load their contents on the

tot lines (tout - x), and then pass these elements across the diagonal lines (to,t - ti,) (see

Figs. 7 and 8). This obviates LIFO stacks. The FIFO stacks are still needed, however, to compute

the vector g(n + 1). The FIFO stacks are filled with the elements of the lower triangular matrix

TT(n) as they are generated. This is done by loading the ti, entry on the tu line (tout - x) when

it is generated. This entry propagates down the diagonal cells (with the function tot .- tin) until

it arrives at and fills the appropriate FIFO stack. For the cells in the right-hand column, which

generate the vector di(n), the operations are different because it is this column that constitutes

the LIFO stack for the vector di(n). Hence, after the new data set is rotated into the array, all the

cells in the right-hand column load their contents on the ,,t lines (o - x), and then they pass

these elements down the column (x,, - Xin) (see Figs. 7 and S). The output xout leaving the

bottom cell in this column passes through the delay element and is routed to both the MAU and

the MPX feeding the d1j elements to the BS array. The elements dim and tm leave the triangular

array at the same time because of this delay element. The timing diagram of the triangular array

is shown in Table 1. In this table, the inputs refer to the elements fed to the cells in the top row.

The circle (0) represents the CG cell and the square (0) represents the GR cell (see Fig. 7). The

outputs refer to the elements that are produced in the array cells and are written columnwise; i.e.,
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the first column in the table represents the first column in the array, and so on.

The BS array is used to solve for the vectors g(n + 1) and 0(n). The vector g(n + 1) is solved

using (20) and the parameter vector 0(n) using (6). Therefore, the vector g(n + 1) is generated

from the matrix TT(n), which is residing in the FIFO stacks, and the vector x(n + 1) which is

available. The entries are fed to the BS array every other BS time cycle, where the BS time cycle

is the time required to perform one flop. As the gi entries are output from the left-end processor

of the BS array, they enter the MAU to generate the value G(n + 1) after 2m + 1 BS time cycles.

Likewise, the parameter vector 0(n) is generated using the matrix T(n) and the vector d1(n) which

are stored in the triangular array. Starting one BS time cycle after the initiation of the first BS

operation, the appropriate entries (of the second BS operation) are also fed to the BS array every

other BS time cycle. The parameter vector 0(n) is output from the left-end processor of the BS

array in reversed order and interleaved with the vector g(n + 1) as shown in Fig. 7. The value

11 di(n) I11 is generated using a MAU one BS time cycle after the last (mth) element of the vector

d1 (n) is generated. The timing diagram of the BS array is shown in Table 2 in which the inputs

refer to the elements fed to the shown cells, and the outputs refer to the elements produced by the

left-end processor in the array.

The values (n) and c2(n+ 1,0(n)) are then computed, and hence, the value An,+i(n+ 1) which

determines whether the new data set is to be accepted or not. If tlie new data set is accepted, then

the weighted new data set enters the triangular array and the same procedure described above takes

place producing a new [T(n + 1) 1 di(n + 1)] matrix after 2m + 1 GG time cycles, and therefore,

an updated G(n + 2), 0(n + 1), and K(n + 1). On the other hand, if the new data set is rejected.

then the triangular array preserves its contents (hold state), but the value G(n + 2) is updated to

make the decision concerning the next data set. In the latter case, the same TT(n + 1) matrix is

used as the previous TT(n) matrix, and hence, the feedback on the FIFO stacks. This procedure

is repeated for every new data set.

The computational complexities (in flops per data set) for the architecture of Fig. 7 is approx-

imated by [16]

f -P, O(3rn)+pO(lln) (30)
parallel

where the first term accounts for checking and the second for solution update, with p defined as

usual. As noted at the outset, the complexities of the solution are parallel complexities in the

sense that they denote the effective number of operations per data set, though many processors

can be performing this number of operations simultaneously. Accordingly, the parallel complexity

indicates the time it takes the parallel architecture to process the data, regardless of the total

number of operations performed by the individual cells. The GG and GR operations constitute the
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main computational load of the algorithm as shown in Table 3. In t!,is table, the number of flops

associated with the GR's is multiplied by five to account for the GG cycle time. These operations

are avoided when the data set is rejected, and thus, a significant savings in computation time is

achieved.

Suboptimal checking may also be used in conjunction with the parallel processing. In this case

it is simply unnecessary for the processor to compute the second, third, and fourth items in Table 3

in order to chec' the incoming data set. The reduction in computation, which is is not as significant

as in the sequential processing case, is reflected by the approximation

f sbopt (' O(m) + p'0(llm) (31)
parallel

for small p' [16].

4.2 Adaptive Compact Architecture

The architecture described above can be modified to improve cell utilization and to incorporate

adaptation by back-rotation. The basic idea behind the compact architecture is to map the triangu-

lar array of Fig. 7 into a linear array (called the GR array), that is, mapping all of the GG cells into

one GG cell and all the GR cells that are on the same diagonal into one GR cell. This constitutes

a permissible schedule because the projection vector, (T. is parallel to the schedule vector, 9, and all

the dependency arcs flow in the same direction across the hyperplanes (e.g. [42, Ch. 31). In other

words, this schedule satisfies the conditions s-'rd> 0 and s'TF > 0, for any dependence arc F'.

The compact architecture implementation of the adaptive SM-WRLS algorithm is shown in

Fig. 11. The operations performed by this architecture are similar to those of Fig. 7 with the

exception that the GG and GR cells are now capable of performing back rotation (see Fig. 12) and

are embedded in a slightly more complicated modules needed for scheduling. These modules are

called GG' and GR', and are shown in Fig. 13.

This architecture uses 0(m) cells (one GG' cell and m GR' cells) compared with O(m2 ) cells

(m GG cells and (in 2 + m)/2 GR cells) used in the architecture shown in Fig. 7, and yet has the

same computational efficiency per n. Note however that the LIFO stacks that were embedded in

the triangular array of Fig. 7 are now needed to hold the matrix T(n).

The system shown in Fig. 11 works as follows. Each data set (with its optimal weight) enters the

GR array (from the top) in a skewed order, and the matrix [T(n) I d(n)] is generated and stored in

the appropriate memory units. Note that the GR array can operate in two modes, forward (6 = +1)

and backward (6 = -1) rotation modes (see Fig. 12). In the backward rotation mode, the data set

to be removed is re-introduced to the GR array with the appropriate weight. At the end of each
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recursion, the FIFO stacks contain the lower triangular matrix TT(n) needed to solve for the vector

g(n + 1), and hence, the value G(n + 1). The LIFO stacks contain the upper triangular matrix

T(n) needed to solve for the parameter vector b(n). The values G(n + 1) = II g(n + 1) 112 and

II d1(n) 112 are generated by the MAU's. Note that the values which were propagating downward

in the triangular array of Fig. 7 are now propagating leftward due to the new scheduling. Note

also that the vector di(n) is treated differently from the matrix T(n). When the element d1i is

computed, it is stored in an internal register in the GR' cell (see Fig. 13). After generating and

storing the matrix [T(n) I dl(n)], the processor is ready to compute the vectors g(n + 1) and

0(n) using the BS array. The vector di(n) is downloaded into the latches which serve as a LIFO

stack used in conjunction with the other LIFO stacks (containing the matrix T(n)) to solve for

the parameter vector 0(n). The timing diagram of the GR array is shown in Table 4 in which

the input (output) columns show the elements that are input (output) to (from) the corresponding

GG (0) or GR (0) cells. Compared to the triangular array of Fig. 7, it is noted that the cell

utilization per update (or downdate) has increased by a factor of 2.25 for the case when m = 3,

or by (.5m 2 + 1.5m)/(m + 1) in general. The operations and timing diagram of the BS array are

described in detail above.

The adaptive compact architecture of Fig. 11 has slightly more complicated cells than that of

Fig. 7, but requires the same number of operations to check and incorporate a data set. However, the

compact architecture processor may additionally be used to back-rotate a data set for adaptation.

The forward and backward rotation modes have the same parallel complexity. Therefore, it is only

necessary to add terms of the form bO(11m) to either (30) or (31) to account for back-rotation,

where b has the usual meaning.

5 Conclusions

Two general contributions have been made to the theory and application of OBE algorithms for

linear-in-parameters models. We have first suggested that all reported OBE algorithms, both

nonadaptive and adaptive, can be placed into a general framework which is intimately related to

recursive LSE processing. A flexible form of explicit adaptation has been demonstrated within this

framework. In particular, a general technique based on "back-rotation" within the context of the

QR-decomposition based version of WRLS offers a flexible array of adaptation strategies and good

tracking ability. Secondly, two very different approaches to rendering a specific OBE algorithm,

SM-WRLS, of 0(m) per n computational complexity have been proposed. The computational com-

plexity of the optimal OBE algorithms is of 0(m 2 ) flops per n in spite of the highly discriminating
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data selection through set-membership criteria. This fact has not been made clear in the literature.

This paper has demonstrated both an algorithmic and an architectural solution to this problem,

making the SM-WRLS method superior to many other LSE techniques in a computational sense.

In signal processing applications, this computational advantage is complemented by the~existence

of the feasible set of solutions for which many other interesting purposes may be found.
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Figure 1: Acoustic waveform of the utterance "seven" upon which the time varying system in the

simulation studies is based.
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Figure 2: "Nonadaptive" SM-WRLS algorithm applied to the, estimation of parameter a 4.. Only

p 0.079 of the data is used, but the estimate fails to track the true parameter.



-3

-aa

Sample, M <X103)

3-

true

0 t a 3 4 t 7

sample, M (XO 3

Fiue3 inoe MWRSwt B~2a aachcigap~dt h etmto o aaee
a4-.Thewinow enghs re a) 50, b) 000 an (c 150 i ntad h ratos a =021

(b) .174 an (c)0.13 oftedtarusdith etm ton



estimate

true

sample, n, (X10 3 )

Figure 4: Windowed SM-WRLS with suboptimal data checking applied to the estimation of pa-
rameter a4,. The window length is 1000 points and the fraction p = 0.087 of the data is used in
the estimation.
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Figure 5: "Selective forgetting" SM-WRLS with optimal data checking applied to the estimation
of the parameter a4 .. The criterion for selective removal of past points is described in the text.
The fraction p = 0.129 of the data is used by the estimation procedure and the adaptation is
computationally very inexpensive.
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Figure 6: "Selective forgetting" SM-WRLS with suboptimal data checking applied to the estimation
of the parameter a4,. The criterion for selective removal of past points is described in the text.
The fraction p = 0.088 of the data is used by the estimation procedure and the adaptation is
computationally very inexpensive.
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Figure 7: Systolic array implementation of the QR-WRLS based SM-WRLS algorithm. For simplic-
ity, but without loss of generality, a pure autoregressive case of order three (AR(3)) is illustrated.



If (xi= O)

c=l

tin tout = tin

x(CIS) else(
** t 

I

terp - [X2 + (xi.)2lZ/2

tout c= x / temp

(a) x = temp
tout = x

)

tin xm If (xin & C = & s o)
~tout M=tin

(c,s) x (CIS) ee = C x + s xin

gout = -S x + cxin

xout tout tout = x

(b)

tin q=t

tout =in

tout

(c)
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Figure 8: The operations performed by the cells used in the triangular array of Fig. 7. (a) The
Givens generation (GG) cells, (b) the Givens rotation (GR) cells, and (c) the delay element.
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Figure 9: Operations performed by the back substitution array. (a) The left-end processor and (b)

the multiply-add units. The initial yjj, entering the rightmost cell is set to 0.
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Figure 10: NMultiply-add unit used in Fig. 7.
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Figure 12: Operations performed by (a) the GG and (b) the GR cells used in the modules of Fig. 11.
6 = +1 (-1) for rotating the data set into (out of) the system.
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Inputs Outputs

Time 0 00 0 (T(n) I dI

0 y(n - 1)
1 y(n - 2) tls
2 y(n - 3) t12

3 y(n) t22 t13

4 t23  dil
5 t3 d12

63 d13

Table 1: Timing diagram of the triangular array of Fig. 7.

Inputs Outputs

Time 0 0 0 0

0 t1j,y(n - 1)
1 t3, d13  t12 91
2 t22,y(n-2) t23 t13  a3
3 t22, di2  t23 t1 3  92

4 t3, y(n - 3) t1 2  a 2

5 tit, di 93

6 a,

Table 2: Timing diagram of the back substitution array of Fig. 7.



Element Computed flops per n
E(n + 1,0O(n)) in + I
coefficient of quadratic (18) 7
AZ+ 1 (n +1)5+

G(n + 1) and O(n) 2m+ 1
If data set is accepted:
update m + 1 + -

Givens rotations -5(21n + 1)
K(n) -1

Table 3: Numbers of operations required by the GG and GR cells in the architecture of Fig. 7.



Inputs Output$

Time 0 a0 0 0 0 a 0

0 y(n- 1)
1 y(n - 2)
2 y(n - 3) t12
3 y(n) t22  t 34 t23 di,

5 t d, 2
6 d13

Table 4: Timing diagram of the GR array of the compact architecture of Fig. 11.


